
ICT159 Lecture Notes Topic 5 – Page 1

Topic 5 – Modular
Programming

TOP DOWN DESIGN
Programming is Hard!
 Most programmers and computer scientists would probably

agree that programming is hard.

 This is not so much that it is hard to learn (although you

might think it is right now!).
 But rather that writing a program which solves any non-

trivial problem and works reliably (without bugs) is very
difficult.

 The main reason for this is that, for all but the simplest

programs, a lot of complexity is required to provide a
comprehensive piece of software.

 In fact, computer programs are among the most complex
and sophisticated things that humankind has ever created.

 Computer scientists want to make this process easier and so

a lot of work has gone into reducing the complexity.

 If computer code can be made more manageable then it will

be easier to write programs and will have fewer bugs.

 Just as importantly, it will also be easier to fix any bugs that

are found.

ICT159 Lecture Notes Topic 5 – Page 2

Taking it from the Top
 Top down design is one way of trying to make the

complexity more manageable.

 TDD means that we approach the task of solving the

problem (and writing the code) starting from the top (the
high level details) and working our way down to the bottom
(the low-level details).

 Back in Topic 1 we developed a high-level algorithm and

gradually refined it to the individual steps needed to solve
the problem.

 This is exactly how TDD works.

 So TDD involves:

 Developing a high level algorithm containing a number
of steps which will solve the problem.

 These should be general steps and will not usually
involve the specific calculations needed.

 Taking each of these steps and decomposing it.
 In other words, working out what more detailed,

lower-level steps need to be performed to
complete the higher-level step.

 This is often called refining your high level
solution.

 Sometimes you will have to have several layers of
decomposition/refinement, depending on the
complexity of the problem.

ICT159 Lecture Notes Topic 5 – Page 3

Modularity and Top-Down Design
 So how does this process of breaking down the solution

into more detailed, lower-level steps actually work?

 In practice this is closely linked with the notion of

modularity.

 This means that each of the refined steps is
separated out into a distinct module of code.

 Each of these modules performs each of the refined sub-

steps from the high-level algorithm.

 However, for TDD to be successful in terms of providing a

useful methodology for dealing with complexity, these
modules must be constructed in a certain way.

 Specifically they should have a number of important

properties.

 These are:

 An appropriate level of abstraction between modules.
 Ability to re-use the module is maximised.
 High cohesion within each module.
 Low coupling between modules.

ICT159 Lecture Notes Topic 5 – Page 4

Abstraction
 Abstraction is involved with hiding details that aren’t

necessary for us to know while understanding in general
terms what is going on.

 For example, most people drive a car but few are

mechanics.
 We know that our cars have engines which consume fuel

when we drive and we need to re-fuel regularly otherwise
our cars will stop working.

 But we don’t need to understand the details of what is
actually going on inside our car’s engine when it burns
the fuel.

 Instead we just focus on the general things that we need
to know to do what we need to do.

 Therefore we abstract the details of how our cars work.

 The same applies when we split up a problem into

steps/modules and then refine the details of exactly how
each of those modules performs its task.

 Although all of the modules must work together to solve

the problem, no module should need to know exactly how
another module works.

 Instead they just need to know in general terms what the
module does (primarily what its outcomes are), plus any
data that it requires to perform its task.

 In general as little information as possible about how a

module works (as opposed to what it does or its outcomes)
should be available outside of that module.

ICT159 Lecture Notes Topic 5 – Page 5

Code Re-Use
 The concept of code re-use is summed up in a common

programmer’s catch-cry:

Don’t re-invent the wheel!

 If code has already been written to solve a particular

problem, why develop and write your own version of that
code?

 This is particularly true if the existing code has been
extensively debugged and tested.

 Code re-use applies in terms of modules.
 A single program will often use one of its modules a

number of times for slightly different purposes.
 For this reason it is best to make modules as general as

possible in their behaviour providing it still solves the
original problem and does not become much more
complex.

 For example, if you need a module to calculate the

average test marks for a class of 10 students, it would
be better to write the module so it will work for any
number of students.

 That way, if/when the class size changes, you can re-
use the module.

 Re-use also applies to so-called “code libraries” which are

collections of modules made available to all programmers
working with a particular language/platform.

 For example, the printf() and scanf() functions we
have been using are modules provided as part of C.

ICT159 Lecture Notes Topic 5 – Page 6

High Cohesion
 The code which makes up a module should exhibit high

cohesion.

 What this means is that all of the code in that module

should be concerned with the same thing.
 A module that does a number of things which aren’t all

related to the same sub-step is not cohesive and becomes
less general and harder to maintain.

 This is because the code associated with a specific task
will no longer be isolated to a single module but
possibly spread over many separate modules.

 So all the code in a module should be associated with the

same logical task.

Low Coupling
 Low coupling between modules means that each module

should have limited ability to interact with data belonging
to other modules.

 If a module can alter the data belonging to another module
then this could cause that module to fail and the bug would
be very hard to find.

 Low coupling is closely related to abstraction since hiding

the data associated with a module helps to abstract the
behaviour of that module.

 We’ll look at how data abstraction works in more detail a

little later on.

ICT159 Lecture Notes Topic 5 – Page 7

MODULARISATION IN C
Overview
 In virtually all programming languages there is some way

of splitting up the body of code that makes up the program
into separate modules.

 However, there are different philosophies and paradigms

for doing this.

 The C language uses a process of proceduralisation

whereby the program is broken up into modules of code.
 These modules are called functions.

 Each of these functions performs a specific task related to
solving the overall problem.

 This relates to the notion of top-down design.
 The design of the functions that make up a C program

should adhere to the principles of abstraction, re-use,
high cohesion and low coupling.

ICT159 Lecture Notes Topic 5 – Page 8

Function Syntax
 We have actually already been using functions in our C

programs!

 All programs must have a function called the “main
function” and this is where execution begins.

 Our programs so far have only had a single function,

namely the main() function.

 Programs that are made up of other functions still have a

main() function.

 However, the job of the main() function is no longer to
contain all the code to solve the entire problem.

 Instead it now calls the other functions which perform the
individual sub-steps that make up the algorithm.

 This means the main() function effectively becomes
the implementation of our high level algorithm with the
other functions representing the refined steps.

ICT159 Lecture Notes Topic 5 – Page 9

Here is a simple program consisting of three functions
showing how the calling process works:
#include <stdio.h>

void Step1()

{

 printf(“Now performing Step 1.\n”);

 /* Step 1 code in here */

 return;

}

void Step2()

{

 printf(“Now performing Step 2.\n”);

 /* Step 2 code in here */

 return;

}

int main()

{

 Step1();

 Step2();

 return(0);

}

 Note the use of curly brackets to show where a function

begins and ends.

 Generally the main() function should be at the end of the
program with the functions that it calls above it.

 Functions have names, just like variables, but this time
they represent a piece of code rather than data.

ICT159 Lecture Notes Topic 5 – Page 10

 Unlike variable names, function names always have

brackets after them, e.g., main()
 In the program above these brackets are empty but

they can contain things (later!).

Function Declarations and Function
Calls

 Just like variables, functions are both declared (i.e.,
initially defined) and used.

 When a function is used, this is referred to as calling
the function.

 Calling a function involves executing the code it contains.
 Therefore, it is the calls to functions, rather than their

declaration, that defines what the program actually does
and in what order.

 It's quite possible to define a function that you never
call, although this is not particularly useful!

 Therefore, the basic hierarchical structure of a top-down,
modular program is defined by the function calls.

 In the previous example program, the calls to the

functions are in main(), whereas the definitions of the

functions are above main().

 As long as the declarations of the functions Step1() and

Step2() remain, altering the calls to these functions will
change the behaviour of the program.

 Here is an example…

ICT159 Lecture Notes Topic 5 – Page 11

void Step1()

{

 printf("Now performing Step 1.\n");

 /* Step 1 code in here */

 return;

}

void Step2()

{

 printf("Now performing Step 2.\n");

 /* Step 2 code in here */

 return;

}

int main()

{

 Step2();

 Step1();

 Step2();

 return(0);

}

 Note that changing the order of the function calls in

main() completely changes what the program does, even
though the order of the declarations remains the same.

ICT159 Lecture Notes Topic 5 – Page 12

Function Return Types
 Functions can produce a result, called a return value.

 We’ve already seen this with the sqrt(), tolower()

and pow() functions.
 When you define the function by writing out the code

included in that function you need to specify the data type
of the return value.

 This can be any primitive data type (e.g., int, char,

float).

 For example, the main() function conventionally returns

an int:

 int main()

 Our Step1() and Step2() functions, however, return

void.
 This means they produce no result.
 In other words, they perform some operation but don’t

return any value.

 The return statement inside a function makes the function
finish executing and return to the next line after where it
was originally called.

 It also allows the return value of the function to be

specified, e.g., return(0) causes the function to return the
value zero.

ICT159 Lecture Notes Topic 5 – Page 13

FUNCTION PARAMETER

PASSING
Introduction
 Being able to get a value out of a function as a result is very

useful.

 We’ve already seen examples of this with the tolower()

and sqrt() functions:

 response = tolower(response);

 geomean = sqrt(n1 * n2);

 But return values have two obvious limitations:

 Only a single piece of data can be obtained from each
function (big problem).

 How do we get data into the function in order to
process it and get the result? (Bigger problem!)

 So procedural modular programming languages like C

provide a means for us to pass data both in and out of
functions.

 This is in addition to being able to return values from
them.

 These data values passed in and out of a function are called

parameters.

ICT159 Lecture Notes Topic 5 – Page 14

Simple Parameter Passing Example
#include <stdio.h>

/* Calculate the sum of two numbers */

int Sum(int x, int y)

{

 return(x+y);

}

int main()

{

 int a, b, total;

 printf(“Enter number 1: “);

 scanf(“%d%*c”, &a);

 printf(“Enter number 2: “);

 scanf(“%d%*c”, &b);

 total = Sum(a, b);

 printf(“The sum is: %d\n”, total);

 return(0);

}

Note:

 The variables a and b are passed into the function Sum as
parameters.

 The variables x and y take on the values of a and b
respectively as determined by the order the variables are
passed into the function.

 The types of the parameter variables x and y must be
specified and this is done inside the brackets where the
function is defined.

 Also note the way the return value is assigned to total.
 If you don’t do something with the result of a function

which returns a value, then this is discarded and lost.

ICT159 Lecture Notes Topic 5 – Page 15

Variable Scope
 Remember the principles of abstraction and low coupling to

which modules should adhere?
 This applies to data (i.e., the variables being used) in a

special way.

 Variables cannot be “seen” (i.e., their values accessed and

changed) everywhere throughout the program.
 In fact, normally variables are only visible within the

function in which they are declared.
 This is called the variable’s scope.

 So the variables a, b and total from the main() function

in the above program are not visible inside the Sum()
function.

 This is why we can’t just write return(a+b) inside

the Sum() function.
 (It would also be poor abstraction and high coupling.)

 Also the parameter variables (like x and y) are only visible
within the function into which they are passed.

 By limiting the scope of variables to the function in which

they are declared we can enforce abstraction (other
functions don’t know what data is inside one another and
they don’t need to know) and low coupling (other functions
cannot accidentally change the data within a function.)

 Also because of scope the way parameters are passed into
and out of a function (plus any return values) become very
important.

 These define the interface to that function.

ICT159 Lecture Notes Topic 5 – Page 16

Another Parameter Passing Example
This program gets two integer numbers and calculates the
sum and average of them.

/* Returns the sum of two integers */

int Sum(int x, int y)

{

 return(x+y);

}

/* Returns the average of two integers */

float Average(int x, int y)

{

 int sum;

 sum = Sum(x, y);

 return(sum/2.0);

}

int main()

{

 int a, b;

 printf(“Enter first number: “);

 scanf(“%d%*c”, &a);

 printf(“Enter second number: “);

 scanf(“%d%*c”, &b);

 printf(“The sum is: %d\n”, Sum(a, b));

 printf(“The average is: %f\n”,Average(a, b));

 return(0);

}

ICT159 Lecture Notes Topic 5 – Page 17

Things to Note:

 The different return types used by Sum() and

Average(), int and float respectively.

 The names given to the parameter variables in Sum() and

Average() are the same (x and y), but this doesn’t
matter because the scope of these variables is restricted to
that function only.

 In fact the variables a and b inside main() could also

be called x and y and the program would work
correctly.

 There is code re-use going on as the Average() function

calls Sum().

 The main() function which calls the other two functions
doesn’t “need to know” anything about how they work
(abstraction).

 For example, it doesn’t know that Average() calls

Sum().

 All it needs to know is what data to pass into the
function and what data comes back (interface).

 There is a comment before each function briefly
describing what it does, the data it takes and returns.

 This is good practice, even for trivial functions.

 The return values from the Sum() and the Average()
functions are not actually stored in a variable anywhere

but are passed directly to the call to printf().

 Note that printf() doesn’t care if it’s parameter
values are variables, some arithmetic expression or a
function’s return value.

ICT159 Lecture Notes Topic 5 – Page 18

 However, you might notice a problem with this program
too.

 Even though the program works correctly, the main()
function does not really adhere to the principles of good
top-down design.

 Specifically the code inside main() is not just responsible
for calling the other functions to solve the problem but also
for solving parts of the problem.

 A high-level algorithm for this problem might look like:

 Get input data from user.

 Calculate Sum

 Calculate Average

 Print Results

 This being the case, the main() function probably should
just contain four function calls for each of these steps.

 In a trivial program like this, it doesn’t really matter

much if main() does contain some code to solve the
problem so long as the function remains fairly short.

 In fact, for simplicity’s sake it’s probably preferable!

 But it’s still not good top-down design so it is a worthwhile

exercise to separate these out.

 But how can we do this?

 We could write a function to read in the two values but
we can only return a single value at a time!

 What is needed is a way of passing multiple pieces of data

back from functions the same way we can pass data into
them in the first place.

ICT159 Lecture Notes Topic 5 – Page 19

Pass by Value
 So far the parameter passing we’ve done has been one-way.
 The data has been passed into the function but no data is

passed out (except for the function’s return value which is
not considered parameter passing).

 This type of parameter passing is known as pass by value.
 Pass by value works by making a copy of the variable being

passed.

 For example the following line from the main() function

involves passing two variables into Sum():
 Sum(a, b);

 The function definition for the Sum() function looks like:
 int Sum(int x, int y)

 And we know that the parameter variables x and y contain

the values that were in a and b respectively.

 This is pass by value because x and y are the copies of a

and b.
 They might have the same values but they are different

variables and are stored in separate memory locations.

 This means that if you make a change to the value of x

inside Sum() it will NOT affect the value of a inside

main().

 So the change is being made to the copy, not the original

and once the function call ends the parameter variables
disappear and the changes are lost.

ICT159 Lecture Notes Topic 5 – Page 20

Pass by Reference
 The way pass by value works is the reason we cannot use

this for passing data back from a function.

 However, there is another technique called pass by

reference which allows us to do this.

 Pass by reference involves creating a special type of

variable (the reference) which refers back to the original
variable.

 This means if we change the value of something passed by

reference, the changes are actually happening to the original
variable and will still exist once the function finishes and
returns.

 C gives the programmer a lot of control over data passed by

reference, which makes it a very powerful feature.
 However, it also means it is possible to make mistakes and

you need to be very careful.

 For the purposes of this unit we are going to use a

simplified version of how pass by reference is implemented
in the C language.

 This involves using a feature of the C++ language which is

an evolution of C and is backwardly compatible.
 So we are still using C but borrowing a feature from C++.

 This is not important to you in this unit but is good to be

aware of.

ICT159 Lecture Notes Topic 5 – Page 21

Simplified Pass by Reference
 To use the simplified pass by reference system of C++ in

our C programs means there is only one small change that
needs to be made.

 When making a call to a function and passing the

parameters by reference, no changes need to be made:

GetData(a, b);

 However, the declaration of the function should indicate

that the variables are passed by reference with the inclusion
of an ampersand in front of their name:

 void GetData(int &x, int &y)

 {

 Once inside the function, you can use a variable that has

been passed by reference exactly the same as normal.
 The only difference will be that any changes made

inside the function will still exist when the function
returns.

 Also note that because these programs are using C++

features they have to be compiled as C++ programs.

 For the bcc32 compiler that most people are using this

involves saving the source code file as .cpp rather than .c

 For example, myprog.c becomes myprog.cpp

ICT159 Lecture Notes Topic 5 – Page 22

Here is a full sum and averaging program that uses pass by
reference exclusively (no function return values) and
represents good top-down design:

/* Get user input */

void GetData(int &x, int &y)

{

 printf(“Enter first number: “);

 scanf(“%d%*c”, &x);

 printf(“Enter second number: “);

 scanf(“%d%*c”, &y);

 return;

}

/* Returns the sum of two integers */

void Sum(int x, int y, int &sum)

{

 sum = x + y;

 return;

}

/* Returns the average of two integers */

void Average(int x, int y, float &avg)

{

 /* Temporary variable */

 int sum;

 Sum(x, y, sum);

 avg = sum/2.0;

 return;

}

ICT159 Lecture Notes Topic 5 – Page 23

/* Display results to the user */

void PrintResults(int sum, float avg)

{

 printf(“The sum is: %d\n”, sum);

 printf(“The average is: %f\n”, avg);

 return;

}

int main()

{

 int a, b;

 int sum;

 float avg;

 GetData(a, b);

 Sum(a, b, sum);

 Average(a, b, avg);

 PrintResults(sum, avg);

 return(0);

}

Things to Note:
 Ampersands are used to indicate which variables are

passed by reference in the function’s definition.
 A temporary variable is needed in the Average function to

hold the value passed back (by reference) from the Sum
function.

 Extra variables are also required inside the main()
function to hold the data passed back.

 Since none of the functions return values they are all type

void.

ICT159 Lecture Notes Topic 5 – Page 24

Here is a final example that uses both pass by reference and
function return values.

It is consistent with good top-down design and the principles
of modular programming.

#include <stdio.h>

/* Get user input */

void GetData(int &x, int &y)

{

 printf(“Enter first number: “);

 scanf(“%d%*c”, &x);

 printf(“Enter second number: “);

 scanf(“%d%*c”, &y);

 return;

}

/* Returns the sum of two integers */

int Sum(int x, int y)

{

 return(x+y);

}

/* Returns the average of two integers */

float Average(int x, int y)

{

 int sum;

 sum = Sum(x, y);

 return(sum/2.0);

}

ICT159 Lecture Notes Topic 5 – Page 25

/* Display results to the user */

void PrintResults(int sum, float avg)

{

 printf(“The sum is: %d\n”, sum);

 printf(“The average is: %f\n”, avg);

 return;

}

int main()

{

 int a, b;

 int sum;

 float avg;

 GetData(a, b);

 sum = Sum(a, b);

 avg = Average(a, b);

 PrintResults(sum, avg);

 return(0);

}

ICT159 Lecture Notes Topic 5 – Page 26

Pass by Reference vs Return Values
 So pass by reference and return values do similar things:

 Both allow you to get data out of a function, which would
otherwise be impossible due to the limitations on variable
scope.

 However, these are two completely different techniques.
 Even though the result is the same, the way they work is

quite different.
 Also remember that a function can only return a single

value whereas as many parameters as you like can be
passed by reference.

 There are also significant differences in how you use each

of these features.

Rules for Pass by Reference
 With pass by reference it is very easy.

 You simply put an ampersand (&) in front of the name of
the variable that you want to pass by reference in the
function declaration:

 void GetData(int &x, int &y)

 Note that the call to the function remains the same.

ICT159 Lecture Notes Topic 5 – Page 27

Rules for Return Values
 Use of return values is perhaps a bit more complicated than

pass by reference.
 Specifically, there are three things you need to do

whenever returning a value from a function.

These are:

1. Declare the function with the appropriate return type.
 That is, if the function returns a value then you

must indicate what its data type is.
 For example:

 int Sum(int x, int y)

 float Average(int x, int y)

 Here the Sum() function returns an integer and

the Average() function returns a float.

2. Return a value of the appropriate type in the function.
 This means you need a return statement

somewhere inside that function which has the
values/variable/expression that you want to return
inside brackets, for example:

 return(sum/2.0);

 This is the return statement from the Average()

function and noticed that the data type of the
value returned is a float.

 Note usually the return statement is the last
statement in the function.

ICT159 Lecture Notes Topic 5 – Page 28

3. “Catch” the return value back in the calling function.
 For the Sum() function in the previous program

this involved passing the return value straight to a
call to printf():

 printf(“The sum is: %d\n”, Sum(a, b));

 However, more commonly the return value is

assigned to a variable for future use:

 sum = Sum(x, y);

 Or alternatively, it could be used in an expression
as if it were a variable or a constant.

 For example, the last two lines of the Average()
function are as follows:

 sum = Sum(x, y);

 return(sum/2.0);

 But these could just as easily have been

condensed into one line:

 return(Sum(x, y)/2.0);

 In other words, the call to a function which
returns a value effectively takes on whatever
value it returns.

 Always remember to do something with this
value, otherwise it is simply thrown away and
your program continues executing.

 This is a very common error by beginner programmers!

ICT159 Lecture Notes Topic 5 – Page 29

So when should you pick return values over pass by
reference?

 If a function produces more than one value then pass by

reference must be used.
 But this doesn't mean it has to be used for all of these

values and it may be appropriate to also use a return
value for one of them.

 Similarly, just because just one piece of data comes out
of the function does not mean that you have to use
return values.

 If a function produces a single value then it may be

appropriate to use return values instead of pass by
reference.

 You should definitely do this when this value is the
result of some calculation.

 This is probably the only clear rule that can be applied.

ICT159 Lecture Notes Topic 5 – Page 30

Function Order and Prototypes
 In order for a program to call a function, the compiler must

know that the function exists.

 In the programs we've seen so far, this is accomplished by
declaring the function before it is called.
o For example, in our Step 1/2 program, if the main

function was placed at the top of the code, the program
would no longer work.

o This is because the functions Step1() and Step2()
would not have been defined yet.

 To get around this problem, so called function prototypes can
be defined at the top of the program.

 These basically tell the program the function's name, return
type, parameter types and parameter order.
o Note that it is not necessary to put the actual names of

variables in the function prototypes.

 Once function prototypes have been declared, it becomes
possible to call the functions in any order.

 Note that use of function prototypes is not required in this
unit but may be beneficial in certain programs.

#include <stdio.h>

void GetData(int&, int&);

int Sum(int, int);

float Average(int, int);

void PrintResults(int, float);

/* Get user input */

void GetData(int &x, int &y)

{

 printf(“Enter first number: “);

 scanf(“%d%*c”, &x);

ICT159 Lecture Notes Topic 5 – Page 31

Summary of Modular Programming
Concepts
So here’s the modular programming concepts we’ve covered
so far:

 We can use top-down design where we start with a high-
level (general) view of the solution and “fill in the gaps”,
step by step.

 This process of starting with a general solution and
refining each step to work out the details makes it much
easier to develop correct solutions to complex problems.

 This approach relates closely to modular programming
where we split up the code into separate parts, each of
which solves a specific part of the problem.

 These modules (called functions in C) should all adhere to
the principles of abstraction, code re-use, high cohesion
and low coupling.

 Functions can either produce a result (returning a piece of
data of a given type) or just perform an operation (return
void).

 We can pass data into a function and also pass data back
out as well (in addition to returning a single value).

 If the data only needs to go into the module then it is
passed by value and this involves making a copy of the
data: any changes are made to the copy and not the
original.

 Alternatively data can be passed by reference where a
reference to the original data is passed into the module:
changes are therefore made to the original and so these
persist after the function has returned.

ICT159 Lecture Notes Topic 5 – Page 32

STRUCTURE CHARTS
 Structure charts are an important tool for diagrammatically

showing how the different modules in a program are
related.

 Structure charts show each of the modules in the program
and show which modules call which others.

 They are arranged hierarchically and always begin with the
main module at the top.

 The main module calls the first layer of modules, each of
which is responsible for performing the high-level steps of
the algorithm.

 These may then call other modules in larger programs.
 Sometimes data flows are shown on structure charts: these

show the data that is passed into the function and that
comes out of it.

main

First Step
Function

Second Step
Function

Third Step
Function

Second Step
Substep 1

Second Step
Substep 2

ICT159 Lecture Notes Topic 5 – Page 33

Here is a structure chart for the final version of the summing
and averaging program above:

x, y
sum, avg

avg

x, y sum

sum x, y

x, y

main()

GetData()

Sum()

Average()

PrintResul

ts()

Sum()

ICT159 Lecture Notes Topic 5 – Page 34

CODE RE-USE AND LIBRARIES
 Code re-use was mentioned as an important principle

applying to modular programming.
 This means that when you write a module, ideally its

interface should be general enough that it can be re-used.
 High cohesion, low coupling and abstraction help to

facilitate this.
 However, while the module should solve the problem in

a general way to facilitate re-use, it should also
maintain high cohesion.

 However, module re-use is not just limited to within the

same program.
 Often modules are general enough and solve a common

enough problem that it is likely they could be used again in
other programs.

 This leads to the collection of modules together into groups
called libraries which can then be used in many programs.

 This saves the programmer re-writing code that they or
someone else has already written.

 Most programming languages come with extensive libraries

for various purposes such as:
 Character and “string” manipulation.
 Input/output: both to files and interactively (i.e.,

keyboard and screen).
 Graphics manipulation and user interfaces.

 For example, printf() and scanf() are part of the
Standard C Library.

ICT159 Lecture Notes Topic 5 – Page 35

ADVANCED MODULAR

PROGRAMMING CONCEPTS
Public Interface
 The modules that you write may become part of a library

and be used by lots of different programmers in solving lots
of different problems.

 As a result, the details of exactly how they are designed
matter a lot.

 One important aspect of this is the first principle of modular

programming that we looked at: abstraction.

 That is, just because a programmer is going to use a module

that someone else has written, it doesn’t mean they
necessarily need to know exactly how that module works.

 Instead they just need to know what it does and how to use
it.

 This is known as the interface of the module.

 In fact, libraries are often described as application
programming interfaces or APIs.

 Because the interface to a module needs to be known in

order to use it, this part of the module is described as being
public.

ICT159 Lecture Notes Topic 5 – Page 36

Private Implementation
 So long as you know a module’s interface, you don’t need

to know the details of exactly how it works (abstraction).

 So it is often said that the details of how a module works

are private.
 This implies that they are virtually hidden from the

programmer who is using the module and to some
extent this is true.

 The code that actually makes up the module is often

described as its implementation.

 The implementation of a module is often kept separate from

its interface in order to enforce the separation between
public and private.

 This helps to enforce the principle of abstraction.

 As long as the implementation is consistent with the

described interface then this does not matter.

ICT159 Lecture Notes Topic 5 – Page 37

The C Approach
 The way C approaches this is to use two separate files when

writing a library.
 One file contains the (private) implementation and this gets

compiled in a special way and becomes the library object
code that is linked in with other program code.

 The other file is the interface and this is called a header file

and ends with the extension .h

 These are the files that are referenced in the #include
directives at the start of most C programs.

 #include <stdio.h>

 The header file itself doesn’t contain any real code

(implementation), just a set of definitions stating what
functions are part of library, what parameters they take and
values they return.

 It also usually contains extensive comments describing
what each function does and what its parameters are.

 This effectively defines the interface for those library
functions.

 Other languages do things slightly differently.

 Although we won’t be creating any libraries in this unit, we

will be using modules from such libraries so these concepts
are important to understand.

ICT159 Lecture Notes Topic 5 – Page 38

USING BUILT-IN FUNCTIONS
Random Numbers Generation

 The generation of random numbers is a relatively common
task in many programs.
o However, note that most modules for this purpose

actually generate pseudorandom numbers.
o These numbers are not truly random and are potentially

predictable, so should not be used in situations where
unpredictability is important.

 Computers can't simply pick random numbers -- they can
only “calculate” them.

 However, this means that if an algorithm for calculating
random numbers is performed, the result will be the same
every time.

 To avoid this, the random number generator must be
“seeded”, basically by giving the computer a random value
on which to base the sequence it calculates.

 In C, the random number generator can be seeded using the

srand() function.

 However, this function must be given a value as the seed.

 The easiest way to do this is to use the time, which is
constantly changing and therefore will normally give
different results each time:

srand(time(0));

 Note that seeding should only be done once at the start if

generating a sequence of numbers in a program.

 Otherwise the same number will be generated.

ICT159 Lecture Notes Topic 5 – Page 39

Generating the Numbers
 The rand() function generates a number (semi-)randomly

chosen between the ranges of 0 and the built-in constant

RAND_MAX.

 The following program demonstrates this behaviour:

#include <stdio.h>

#include <time.h>

#include <stdlib.h>

int main()

{

 int r;

 srand(time(0));

 r = rand();

 printf("Random number chosen between zero

 and %d: ", RAND_MAX);

 printf("%d\n", r);

 return(0);

}

 However, most of the time is more useful for the
programmer to specify the maximum random number to be
obtained.

ICT159 Lecture Notes Topic 5 – Page 40

Limiting the Range
 The modulus operator can be used to limit the maximum

value obtained when generating a random number.
o Modulus gives the remainder left over after division.
o The remainder can be between 0 (if it goes in evenly)

or, at most, one less than that number.

 Therefore, calculating the modulus of a random number by
the largest possible value you would like to get back (max)
will give you a number in the range: 0–(max-1).
o Adding one to this result will give you a number

between 1 and max.

 The following program illustrates this technique using a
maximum value provided by the user:

#include <stdio.h>

#include <time.h>

#include <stdlib.h>

int main()

{

 int max, r;

 printf("Enter largest possible number: ");

 scanf("%d%*c", &max);

 srand(time(0));

 r = (rand() % max) + 1;

 printf("Random number chosen between 1 and

 %d: %d\n", max, r);

 return(0);

}

